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Abstract: Nonparametric methods are rich classes of statistical tools that have gained acceptance in most areas of statistics. 

They have been used in the past by researchers to fit missing values in the presence of auxiliary variables in a sampling survey. 

Nonparametric methods have been preferred to parametric methods because they make it possible to analyze data, estimate trends 

and conduct inference without having to fully specify a parametric model for the data. This study, therefore, presents some new 

attempts in the complex survey through the nonparametric imputation of missing values by the use of both penalized splines and 

neural networks. More precisely, the study adopted a neural network and penalized splines to estimate the functional relationship 

between the survey variable and the auxiliary variables. This complex survey data was sampled through a cluster - strata design 

where a population is divided into clusters which are in turn subdivided into strata. Once missing values have been imputed, this 

study performs a model calibration with auxiliary information assumed completely available at the cluster level. The reasoning 

behind model calibration is that if the calibration constraints are satisfied by the auxiliary variable, then it is expected that the 

fitted values of the variable of interest should satisfy such constraints too. The population total estimators are derived by treating 

the calibration problems at cluster level as optimization problems and solving it by the method of penalty functions. A Monte 

Carlo simulation was run to assess the finite sample performance of the estimators under complex survey data. The efficiency of 

the estimator’s performance was then checked by MSE criterion. A comparison of the penalized spline model calibration and 

neural network model calibration estimators was done with Horvitz Thompson estimator. From the results, the two nonparametric 

estimator’s performances seem closer to that of Horvitz Thompson estimator and are both unbiased and consistent. 
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1. Introduction 

The concept of auxiliary variables in the present 

scholarship in statistics denotes independent or predictor 

variables in a regression analysis. As the name suggests, the 

variables offer additional information and may be used to 

improve the estimation of population parameters. As noted 

by [1], micro-econometric research is frequently performed 

using data collected by surveys, which may contain auxiliary 

information for every unit of the population of interest. As 

can be expected, many of these surveys use complex 

sampling plans to reduce costs and increase the estimation 

efficiency for subgroups of the population. Although the 

word complex survey has been used mostly by researchers to 

refer to different combinations of sampling plans, however, 

in this study, complex survey refers to a mixture of both 

stratified and cluster sampling methods [2]. 

The processes of estimation of population total and mean starts 

first with the point estimation of these missing values based on 

auxiliary variable using either parametric or nonparametric 

regression estimations. These are then classified according to the 

nature of the working model used at the estimation stage [11]. As 
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a result, to obtain the estimator of interest, this study involved two 

stages of estimation. Stage one was to obtain point estimation of 

the missing values using penalized splines and neural network 

based on the auxiliary information at cluster levels. The second 

stage applied model calibration technique on the fitted cluster total 

values to obtain the population total as discussed in section 2.0 

and 3.0, respectively of this paper. In model calibration, a distance 

measure defined on some design weights thought to be close to 

the inclusion probabilities is minimized subject to some 

calibration constraints imposed on the fitted values of the study 

variable. In penalty technique, the minimization is usually done by 

introducing penalty function whose solution gives the optimal 

design weights to be used in the estimation of population total. 

This study derived nonparametric model calibration estimators by 

treating the calibration problem as a nonlinear constrained 

minimization problem, which in turn transformed into an 

unconstrained optimization problem using penalty functions. 

[7] employs neural networks for imputation with auxiliary 

information coming from administrative registers. The use of 

neural networks for model calibration in the study is new and 

allows for more flexible prediction and straightforward 

insertion of auxiliary information. A more complex model and 

generalized calibration procedure using model calibration was 

proposed by [12]. These scholars considered generalized linear 

models and nonparametric regression models for the super 

population model ψ 	given in the equation below. 

( )i i iy h x ε= +                                     (1) 

where ������
�  is a sequence of independent and identically 

distributed random variables with 	(��) = 0 and 	(��
�) = �� 

and ℎ(��) is a smooth function which can be estimated by 

any nonparametric methods like kernel, neural network and 

penalized splines. Given n pair of sample observations 

(��, ��),… , (��, ��) from a population of size	�, of interest, 

is the estimator ℎ�(�)  of ℎ(�)  = ( / )E y xψ . For model 

calibration, calibration is performed to the population mean 

of the fitted values ℎ��(��) [12]. The study considers a model 

calibration estimator for population total tY  given below. 

ˆ
i i

i b

Y w y

ε
=∑ .                                (2) 

where b is a set of sampled units under a general sampling 

design while 
,

iw s  is the design weights such that for a given 

metric, are as close as possible in an average sense to the 

1
i

i

z
π

= , where iπ  is the inclusion probability. These 

weights are obtained by minimizing a given distance measure 

between the
,

iw s and 
,

iz s subject to some constraints. The 

chi-squared distance measure to be minimized is as provided 

in the equation below. 

( )2

i i
b

i ii b

w z

q z
δ

∈

−
=∑ .                           (3) 

where iq ’s are known positive constants uncorrelated with 

the iz ’s, [4] subject to two constraints in equation (4) and (5). 

i

i b

w N

ε
=∑                                 (4) 

and 

1

ˆ ˆ
N

i i i

i b i

w h h

ε =

=∑ ∑                            (5) 

where ( )ˆ ˆ
i i ih h x= . 

The model calibration method is intended to provide good 

efficiency when the model is correctly specified, but maintain 

desirable properties like design consistency when the model 

is misspecified [10]. This study embarked on a model 

calibrated rather than internal calibration approach because 

authors such as [5] showed that model calibrated estimators 

performed better than internally calibrated estimators. 

[6] proposed the use of nonparametric method to obtain 

the fitted values. In particular, they used neural networks 

and local polynomial in fitting the missing values for 

clustered data in one-stage sampling. An extension of this 

to two-stage sampling using kernel functions was done by 

[8] to fit the mean functions. Any nonparametric method 

such as kernel methods can be used to recover the fitted 

values for the non-sampled units. Such estimators are 

however challenging to employ in cases of multiple 

covariates and especiall when data is sparse. Another 

challenge involves incorporating categorical covariates. It 

is, therefore, important to consider other techniques of 

recovering the fitted values like penalized splines and 

neural networks when data is complex as discussed in the 

following section 2.0 of this paper. 

2. Fitting of Missing Values 

In this section, the study considered fitting missing values 

for a population divided into clusters which are then 

subdivided into strata. This section considered a case where 

there is auxiliary information known at Cluster Level only. 

The cluster total being the variable of interest, it was 

assumed to be dependent on some auxiliary variable	�. The 

study defined 1 2, ... CQ x x x= as a population of auxiliary 

variables of size C with ix being known at thi  cluster. This 

study further considered population of clusters; F to be 

partitioned into C clusters, each of size , 1,2,...,iM i C= . 

Further, each cluster contains iL strata each of size

, 1,2,...,j iN j L= . Let also ijky be thk  observation in the 

sample from the 
thj  stratum of thi cluster and ix be the 

corresponding auxiliary variable at cluster level. At stage 

one, a probability sample c of size im of clusters is drawn 

from C according to a fixed design 1( )P • (by simple random 

sampling), where 1( )P c is the probability of drawing the 

sample c of size im  from C. The first order cluster inclusion 
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probabilities, 1( )P •  is 1( ) ( )i

i c

pr i c P c

ε
π ε= =∑  and

, 1

,

( , ) ( )i t

i t c

pr i t c P c

ε
π ε= =∑ . The first and the second order 

probabilities are the probability of including cluster i  in the 

sample and the probability of including clusters i  and t  in 

the sample respectively. At stage two, for every sampled 

cluster �	 ∈ �, the study chose a sample ir  of elements of size 

, 1, 2,...,in i c= , where 1 2 ...
ii i i iLn n n n= + + + . Given that 

1 2, ,...,
ii i iLn n n  are sample sizes of the sample chosen from iL

strata by proportional allocation with inclusion probabilities 

/ / ( , / )k j i ipr k j r i cπ ε ε=  and , / / ( , / )k p j i ipr k p r i cπ ε ε= . In 

this case, the first and second order probabilities are the 

probability of including element k  in the sample ir of the 

thi cluster and the probability that unit k  and p  are both 

included in the sample ir respectively. 

Let �� = ℎ(��) + 	��;	 1,2,...,i C=
 
be the ith cluster total, 

where ℎ(��) is a smooth function of x. Let also ˆ ˆ
c i i c

t t
ε

 =    be 

the im  dimension vector of ˆ 'it s which is obtained in the 

sample of clusters. This study uses [3] estimator to obtain 

cluster total estimator given by 

1

ˆ
iL

j

i j i
ij

N
t y M

M=

 
=  

 
∑                        (6) 

where 

1

ijn

ijk

j
ijk

y
y

n=

=∑ is the stratum mean for the thj stratum. 

This study considered modelling ˆ( )ih x in equation (1) by 

way of both penalized splines and neural network and 

performed model calibration on ˆ( )ih x  in case when 

auxilliary information is available at cluster level.

 For penalized splines, this study considered a population 

of cluster F of size C for which several values for a random 

variable were missing at thi
 
cluster. A matrix rX  was 

considered with rows 

( ) ( ){ }11, ,..., , ,...,
q qT q

ri i i i i lX x x x k x k+ += − −         (7) 

for i Fε , q is the degree of the spline, and the 1 2, ,..., lk k k are 

the knots, while 1 1( )x k x k+− = −  if 1x k> and 0 if 1x k≤ . 

Further, rcX  is the sub matrix of rX  which consists of the 

rows 
T
riX  for which the clucter i cε

,
 

�� = �� !�0, … , 0, #, … , #� with q + 1 zeros on the diagonal 

followed by l  penalty constants α. 

The study considered the diagonal matrix of inverse 

inclusion probabilities 
1

,
i

W diag i F
π
  = ∈  
  

and its sample 

submatrix defined as 
1

,c
i

W diag i c
π
  = ∈  
  

. 

This study let 1ψ denote a super population of clusters 

model. To fit the missing values at the cluster level, the study 

defined the nonparametric population estimator
1

ˆ( )i iE t hψ = . 

If the fits are based on penalized splines, then the design 

weighted penalized spline smoother vector at ix due to Breidt 

and Opsomer, (2000) is considered as; 

1( )T T T
ps ri rc c rc rc cJ X X W X A X Wα −= +             (8) 

Equation (8) is such that when applied to the sample ct  it 

yields the nonparametric fit sample fit at ix  for 
1
( )iE tψ as 

ˆ ˆ
i

T
t ps ch J t= .                                    (9) 

Secondly, the study proposed neural network structure for 

the nonparametric fit of the cluster totals defined by;  

ˆ ( , )
it i ih h x θ=

⌣

                               (10) 

The design consistent estimate iθ
⌣

 in the above equation 

(10) was estimated by following same procedure as Montanari 

and Ranalli (2003) as discussed below.  The neural network 

structure for smooth function, ( )ih x  was defined by; 

0 0

1 1 1

( )

Q QG

i q qi g qg qi g

q g q

h x x a x aβ γ γ
= = =

 
 = + Φ + +
 
 

∑ ∑ ∑     (11) 

for 1,2,...,i C=  

In this case G  is the number of neurons at the hidden 

layer; ga ∈ ℜ , for 1, 2,...,g G=  is the weight of the 

connection of the 1, 2,...,q Q=   hidden node with the 

response variable; qgγ ∈ ℜ ,  for 1, 2,...,q Q=  is the weight 

attached to the connection between the $%&auxiliary variable 

and the 1, 2,...,q Q=  hidden node. The scalars  '  and 0gγ , 

for 1, 2,...,g G= , represent the activation levels of, 

respectively, the response variable and the  G  neurons at the 

hidden layer. 

The parameter G which was the number of neurons at 

hidden layer was considered fixed. As a result, the set of all 

network parameters was denoted by 
iθ  and defined as  

{ }1 0 1 01 0 1,..., , , ,..., , ,..., , ,...,i Q G G Ga a aθ β β γ γ γ γ=    (12) 

where	 ( )'

1 ,...,g g Qgγ γ γ= for 1, 2,...,g G= . 

To estimate the regression function in equation (11), [12] 
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proposed obtaining a design consistent estimate of 
iθ  in 

equation (12) and therefore, of the regression function at ix , 

for the fitted values, for 1, 2,...,i C= . To that purpose, this 

study first seek for an estimate iθ  of the model parameters 

based on the entire finite population after which iθ
⌣

was 

obtained, which was a design consistent estimate of iθ  based 

on sample data only 

Further, the following equation presents the population 

parameter, iθɶ  which was defined as the minimizer in the 

parameter space Θ of the weighted sum of squared residuals 

with a weight decay penalty term. 

( )2 2

1 1

arg min 1
( , ) ( )

C r

i i i i i l
i ii l

t h xθ θ µ θ
θ ϑ= =

  = − + ∈ Θ   
∑ ∑ɶ    (13) 

where, iϑ , 1,2,...,i C=  are known positive weights assumed 

to be proportional to the variance function ( )ixϑ , r  is the 

dimension of the vector iθ  and µ  is known to be a tuning 

parameter. Then, iθ was obtained as the solution of the 

following equations. 

( )
1

( , ) 1 1
( , ) 0

C
i i

i i i i
i ii

h x
t h x

C

θθ θ
θ ϑ=

 ∂
− − = ∂ 

∑       (14) 

The sum on the left-hand side of equation (14) is a 

population total; then a design consistent estimate  iθ
⌣

of iθ  

is defined as the solution of the design-based sample version 

of (14) that is the solution of the following equations (15). 

( )
1

( , ) 1 1
( , ) 0

im

i i
i i i i i

i ii

h x
z t h x

C

θθ θ
θ ϑ=

 ∂
− − = ∂ 

∑  (15) 

where 
1

i
i

z
π

= is the inverse of inclusion probability.  

Using the fitted values in equation (9) and (10) this study 

proposed two types of model calibrated population total 

estimator based on Neural Network ( NNy ) and based on the 

penalized splines; PSy  for auxiliary variable available at cluster 

level and based on cluster-strata design with a general form as; 

ˆˆGen i ii c
y w t

ε
=∑ .                        (16) 

Given the inverse inclusion probability as
1

i
i

z
π

= , the 

weight iw  for penalized spline estimator was obtained by 

minimizing the chi-square distance measure in equation (3) 

subject to the constrains; 

i

i c

w C

ε
=∑ and

1

ˆ ˆ
i i

C

i t t

i c i

w h h

∈ =

=∑ ∑                  (17) 

The weight iw  for NN estimator was obtained by 

minimizing the same chi-square distance measure in equation 

(3) subject to the constrains; 

i

i c

w C

ε
=∑  

and 

1

ˆ ˆ( , ) .
i i

C

i i i i t t

i c i c i

w h x w h hθ
∈ ∈ =

= =∑ ∑ ∑
⌣

.           (18) 

3. Penalty Function Method of Obtaining 

the Weights 

The procedure of estimating the optimal weights iw  is done 

by the penalty function method. This function method 

transforms the basic constrained optimization problem into an 

unconstrained optimization problem. In nonparametric model 

calibration estimation, this study followed the same procedure 

by [9]. The weight iw  in equation (16) was obtained by 

minimizing the chi-square distance measure in equation (3) 

subject to the constraints in equation (17) and (18) for 

penalized spline and neural network estimators respectively. 

In this case, ˆ
it

h  is a nonparametric fit of the missing 

cluster total at the cluster level. Here, calibration constraint 

1

ˆ ˆ 0
i i

C

i t t

i c i

w h h

∈ =

− =∑ ∑  is defined on the fitted values in 

equations (9) and (10); this is called model calibration. The 

study then constructed an unconstrained problem as follows. 

( )2

( , ) ( , ( )), 1,2
i i

c c j
i ii c

w z
w g g v w j

q z
τ

∈

−
= +Ω =∑     (19) 

where ( , ( ))c jg v wΩ is a penalty function. Following same 

procedure by Rao (1984), equation (19) becames; 

( )2 2

1

( , ) ( ) ( )
i i q

c c j
i ii c j

w z
w g T g v w

q z
τ

∈ =

−
= +∑ ∑        (20) 

where ( )cT g is some function of the parameter cg  which 

tends to infinity as cg tends to zero and also 

2

1

( )
q
j

j

v w

=
∑ tend 

to zero. In this study, the penalty terms are chosen such that 

their values will be small at points away from the constraint 

boundaries and as the constraint boundaries are approached 

they will tend to infinity. As a result, the value of τ  will also 

blow up as the constraint boundaries are approached. This 

study chose the value of 2q = . Substituting the constraints

2

1

( )q
j

j

v w

=
∑   with the constraints in equation (17) now in the 

equation (20) results into; 
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( ) 2 22

1 1 1

( , , ) ( ) ( )
i i i

c C c
i i

c t c i t t c i
i ii c i i i

w z
w g h T g w h h T g w C

q z
τ

∈ = = =

   −
= + − + −   

   
   

∑ ∑ ∑ ∑ .                                (21) 

Equation (21) above was differentiated partially with respect to iw  to give;

 

1

1 1 1

( )ˆ ˆ ˆ ˆ( , , ) 2 2 ( ) 2 ( )
i i j j

c C c
i i

c t c t j t t c i
i i j j i

w z
w g h T g h w h h T g w C

q z
τ

= = =

   −
 = + − + − 

     
∑ ∑ ∑ .                        (22) 

Further, equating (22) to zero and solving for iw  the weight becomes; 

( )
1 1

2

ˆ ˆ ˆ ˆ( ) 1 1

ˆ1 ( ) (( ) 1)

i j i j

i

c C

i c i i j t t t t

i j
j i

i

c t i i

z T g q z w h h h h

w
T g h q z

= =
≠

 
 

   − + − −      
 =

+ +

∑ ∑
.                                               (23) 

A general weighted nonparametric estimator of population total in equation (16) for penalized splines and NN based on 

cluster strata design when auxiliary information is known at only cluster level is therefore obtained as 

( ) ( )
1 1

2 2
1 1 1

ˆ ˆ ˆ ˆ ˆ( ) 1 1

ˆ
ˆ

ˆ ˆ1 ( ) (( ) 1) 1 ( ) (( ) 1)

i i j i j

i

i

i i

c C

c i l t j t t t t

i jc c c
j it i

Gen i t

i i ic t i l c t i l

T g q z h w h h h h

h z
y w h

T g h q z T g h q z

= =
≠

= = =

 
 

   + − −      
 = = −

+ + + +

∑ ∑

∑ ∑ ∑
                  (24) 

To obtain the weights ( ), 1,2,...,iw i c=
 
in the equation 

(24), this study solved the penalty functions (21) as an 

unconstrained minimization problem using an iterative 

procedure. The research in this case started with some initial 

guess for iw and cg  then iteratively improved on the initial 

values until optimal values are obtained. The present study, 

therefore, followed the Newton method of unconstrained 

optimization, according to [9] as follows. 

If 1 2, ,...,
imw w w w= is let to be the set of the weights. Of 

interest was to obtain W ο such that 

'
' ˆ ˆ( ) ( , , ),..., '( , , ) 0

i ii c t c c tW w g h w g hο τ τ Γ = =
  .

   (25) 

Further if iW  is let to be initial estimate of W ο so that 

iW W Xο = + . Taylor’s series expansion of ( )WοΓ gives 

( ) ( ) ( ) ...
ii i WW W X W N XοΓ = Γ + = Γ + + .       (26) 

By neglecting the higher-order terms in the above equation 

(26) and setting ( ) 0WοΓ = the study had 

( ) 0
ii ww N XΓ + =                             (27) 

where 
iwN is a im by im the matrix of second derivatives of 

the penalty function equation (21) evaluated at iW . Let also 

i and j  be the row and column counters respectively with

(1, 2,..., )i c= rows with (1,2,..., )j c= columns. The matrix 

iwN  has elements ( )22 ˆ2 ( ) ( ) 1
ic t

i i

T g h
q z

+ + in the main 

diagonal and elements ( )ˆ ˆ2 ( ) 1
i jc t tT g h h +  elsewhere. 

If 
iwN is a nonsingular matrix, then, from the set of linear 

equations (27) the vector X becomes; 

1 ( )
iw iX N w−= Γ .                               (28) 

The study followed the iterative procedure below inorder 

to find the improved approximations of *W  

1
1 ( )

ii i i i w iW W X W N W−
+ = + = − Γ .              (29) 

The sequence of the points 1 2 1, ,..., iW W W + eventually 

converges to the actual solution W ο . When 
o

cW is let to be 

the minimum of W ο  obtained for a particular penalty; cg , 

the study obtained a sequence of minimum points 

1 2 1, ,...,o o o
cW W W + . for the penalties 1 2 1, ,..., cg g g + until 

1
o o

c cW W += or 1
ˆ ˆ( , , ) ( , , )

i ic c t c c tw g h w g hτ τ += for some 

specified accuracy level. This accuracy level may be to a 

certain decimal points or significance level. Again, the 

penalty values can be set such that the starting point 1 0g >
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and 1c cg sg+ = , where 1s < . ( )cT g → ∞ as 0cg →
.
 

4. Empirical Analysis and Discussions 

In the simulation study, a population of size 10,000 

(200*50=10,000) was simulated from a population structure 

containing 200 clusters each of size 50. Each cluster had 5 

strata of size 10 each. At stage one 10, 20, 30, …, 190 

clusters were sampled from the 200 clusters by simple 

random sampling while at stage two, 5 elements where drawn 

from each stratum by proportional allocation. This gave 

sample of 25 elements from each of the sampled clusters. 10 

replications per each sample size were generated. For 

penalized spline method, the number of knots and the Spline 

penalty were optimally generated. 

Using R program, a population of independent and 

identically distributed variable x was simulated using uniform 

(0, 1). In this study neural network and penalized splines 

described in section (2.0) of this paper was used to fit the 

cluster totals as a quadratic function �� = (20 + 6�)� where ti 

is the ith cluster total, and x is auxiliary information known at 

the cluster level. The cluster element values were generated as 

��+, =
��

�-./�01	/�20
+ 01131	�014(0�)/√�-./�01	/�20 

where ijky
 
is thk unit in 

thj  stratum of thi cluster 

On the other hand, to differentiate one stratum from each 

other, the errors for the five strata were given as 0� ∈
(−0.0001,0.0001)  for stratum 1, 0� ∈ (−0.0002,0.0002) 
for stratum 2, 0� ∈ (−0.0003,0.0003)  for stratum 3, 

0� ∈ (−0.0004,0.0004)  for stratum 4 and 

0� ∈ (−0.0005,0.0005) for stratum 5. 

This study reports on the performance of two estimators 

and their comparison in performance with that of Horvitz 

Thompson estimator. The performance of the two 

nonparametric estimators NNy  for neural network and PSy  

for penalized spline were evaluated using its relative bias RB 

and relative efficiency RE. The relative bias is defined as 

1

( )

*

AT

R

est

r
B

AT

y Y

R
R Y

=

−
=
∑

 

where,
 esty  represents any of estimators ˆ

NNy  and ˆ
PSy , ATY

is the actual total and R is the replicate number of samples. 

The relative efficiency was defined as 

( )

( )

est
E

HT

MSE y
R

MSE y
=  

where esty was calculated from the Rth simulated sample and

ˆ
HTy  is the Horvitz Thompson estimator. Large values of 

relative efficiencies represent higher efficiency for the design 

estimator ˆ
HTy over the estimator esty  that it’s being 

compared with and vice versa. The ˆ
HTy estimator was 

defined as HT i iy z t=∑  where iz is the inverse of the 

inclusion probability given by
C

c
iz = . The estimator HTy  

was used as the baseline comparison. 

4.1. Normality Test 

This study carried out a One-sample Kolmogorov-Smirnov 

normality test for the three estimators; ˆ
PSy , ˆ

NNy  and ˆ
HTy  

before their comparative analysis was done. The p values at α 

= 0.05 for the quadratic data obtained are as in table 1 below. 

Figure 1, figure 2 and figure 3 show a sample of graphical 

representation of normality for the quadratic functions. A p-

value greater than the set α = 0.05 significance level means 

normality is established. The results show that at α = 0.05 the 

proposed estimators are normal. 

 

Figure 1. Normality plot forsplinees estimator. 

 

Figure 2. Normality plot for HT estimator. 
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Figure 3. Normality plot for neural nertwork estimator. 

Table 1. Normality test. 

 ˆ PSy
 

ˆ HTy
 

ˆ NNy
 

Normality P-values 0.3368 0.3368 0.3368 

4.2. Results for Population total Estimates 

The table 2 below represents the actual total and the 

estimates of the penalized splines, neural network and the 

Horvitz Thompson for 20, 50, 100 and 150 sample sizes. 

From the results, the estimator PSy  seems to give estimates 

that are very close to those of Horvitz Thompson design 

estimator for all the four sample numbers. Although neural 

network estimates are not as close to Horvitz Thompson 

estimates as penalized splines estimates are, their difference 

isn’t large. 

Table 2. Population total estimates for samples of sizes, 20, 50,100 and 150. 

Replication Number 1 2 3 4 5 6 7 8 9 10 

ATy  
Sample size           

20/50/100/150 7378.120 7378.120 7378.120 7378.120 7378.120 7378.120 7378.120 7378.120 7378.120 7378.120 

ˆPSy  

20 6923.087 7266.075 8390.214 8337.892 6861.890 7848.353 6853.811 9096.062 6426.442 8387.670 

50 7376.460 6897.797 7168.905 7853.759 6766.208 6802.028 8058.299 7267.496 6864.203 7096.616 

100 7064.701 7353.839 7352.669 7087.797 7793.496 7960.013 7373.334 7144.038 7190.551 7476.643 

150 7119.727 7220.824 7388.137 7302.420 7245.242 7250.961 7692.908 7534.390 7624.514 7490.976 

ˆNNy  

20 6968.379 7314.728 8477.491 8432.634 6954.111 7907.010 6952.471 9172.035 6468.121 8461.739 

50 7445.111 6947.934 7216.653 7907.014 6820.390 6847.202 8118.159 7330.350 6909.707 7144.015 

100 7111.888 7403.211 7401.975 7135.046 7846.291 8014.242 7422.843 7191.659 7238.627 7526.937 

150 7167.269 7269.119 7437.667 7351.383 7293.661 7299.453 7744.844 7585.149 7685.760 7541.559 

ˆHTy  

20 6923.085 7266.070 8390.205 8337.890 6861.888 7848.350 6853.805 9096.056 6426.438 8387.667 

50 7376.458 6897.795 7168.898 7853.758 6766.205 6802.026 8058.293 7267.494 6864.201 7096.614 

100 7064.699 7353.831 7352.665 7087.789 7793.490 7960.007 7373.333 7144.035 7190.548 7476.641 

150 7119.724 7220.823 7388.135 7302.419 7245.235 7250.955 7692.899 7534.388 7624.510 7490.973 

 

4.3. Results of Variances and Variance Ratios for Various 

Sample Size 

From table 3 below, the variances for the three estimators 

based on penalized splines, Horvitz Thompson and neural 

network seem to decrease as the sample size increases. This 

implies that all the estimators are consistent. For sample 

sizes; 30, 40, 80, 110, 130,180, and 190 it is seen that 

penalized spline estimator variance is consistently lower than 

ˆ
HTy  estimator variance. The variance ratio Var( ˆ

PSy )/ 

Var( ˆ
HTy ) is slightly greater than one except for sample sizes; 

30, 40, 80, 110, 130,180, and 190. On the other hand, the 

ratios Var( ˆ
NNy )/ Var( ˆ

HTy ) and Var( ˆ
PSy )/ Var( ˆ

NNy ), 

respectively, are all slightly greater and less than one for the 

19 replications. This implies that the estimator NNy  is 

slightly highly variant than the both HTy and PSy  estimators. 

Table 3. Results of Variances and variance ratios for various sample size. 

Samp size 10 20 30 40 50 60 70 80 90 100 

ˆvar( )PSy  1,116,735 791,384.3 472,299.4 270,832.1 195,529.9 324895.5 178,372.3 68,206.39 149,070.4 88,285.94 

ˆvar( )NNy  1,138,744 805,158.9 481,860.3 274,560.8 199,179.2 329,664.9 180,868.0 69,012.64 151,337.9 89,689.56 

ˆvar( )HTy  1,116,731 791,383.1 472,300.3 270,833.1 195,529.3 324,895.1 178,372.3 68,206.81 149,070.3 88,285.64 

ˆvar( )
ˆvar( )

PS

HT

y
y

 1.000004 1.000002 0.9999982 0.9999963 1.000003 1.000001 1.000000 0.9999939 1.000001 1.000003 

( )
ˆvar( )

ˆvar
NN

HT

y

y
 1.019712 1.017407 1.020241 1.013764 1.018667 1.014681 1.013992 1.011815 1.015212 1.015902 

ˆvar( )
ˆvar( )

PS

NN

y
y

 0.9806724 0.9828921 0.9801585 0.9864196 0.9816783 0.9855326 0.9862014 0.9883173 0.9850169 0.9843503 
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Samp size 110 120 130 140 150 160 170 180 190 

ˆvar( )PSy  43,555.62 57,071.18 59,375.22 21,950.49 36,370.42 10,787.63 9419.0414911 4761.6977659 2940.8217118 

ˆvar( )NNy  44,266.82 57,857.09 60,333.68 22,301.83 37,473.49 10,960.02 9570.5942662 4877.8607639 2987.7138079 

ˆvar( )HTy  43,555.74 57,070.94 59,375.44 21,950.33 36,370.16 10,787.50 9419.0151641 4761.7832184 2940.9399535 

ˆvar( )
ˆvar( )

PS

HT

y
y

 0.9999972 1.000004 0.9999963 1.000007 1.000007 1.000012 1.0000028 0.9999821 0.9999598 

( )
ˆvar( )

ˆvar
NN

HT

y

y
 1.016326 1.013775 1.016139 1.016013 1.030336 1.015992 1.0160929 1.0243769 1.0159044 

ˆvar( )
ˆvar( )

PS

NN

y
y

 0.9839339 0.9864164 0.9841140 0.9842465 0.9705641 0.9842713 0.9841647 0.9761857 0.9843050 

 
Results in figure 4 represent variance for the three 

estimators. The variances in this figure seem to decrease as 

the sample size increases implying that all the estimators are 

consistent. Figure 5 represents the variance ratio; Var( ˆ
PSy )/ 

Var( ˆ
HTy ). This figure shows that the ratio was concentrated 

around one implying that both estimators are equally variant. 

Figure 6 and figure 7 shows the variance ratio of Var( ˆ
NNy )/ 

Var( ˆ
HTy ) and Var( ˆ

PSy )/ Var( ˆ
NNy ) respectively. Figure 6 

shows that the ratio points concentrated slightly above one 

while for figure 7, slightly below one implying that ˆ
NNy  is 

slightly more variant than both ˆ
HTy  and ˆ

PSy  estimators. 

 

Figure 4. Variance for spline, HT and neural nertwork estimators. 

 

Figure 5. Variance ratio for spline and HT estimators. 

 

Figure 6. Variance ratio for neural nertwork and HT estimators. 

 

Figure 7. Variance ratio for spline and neural nertwork estimators. 

4.4. Relative Bias 

The following table 4 shows the values of relative biases. 

The results from the table show that the Relative biases for 

the three estimates are minimal given that the population 

totals were in thousands and this point to unbiasedness. On 

the other hand, comparing the penalized spline estimator with 

its corresponding Horvitz Thompson estimators, the 

difference is not significant, and they both have reduced bias 
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than the neural network estimator. 

Table 4. Bias and Relative Biases for three estimators. 

 ˆ PSy  
ˆ HTy  

ˆ NNy  
Relative bias 0.002228853 0.002228399 0.01006926 

4.5. Results on Mean Squared Errors for Various Sample 

Sizes 

This section presents both mean square error and relative 

efficiencies of the three estimators, PSy  based on a penalized 

spline, HTy based on Horvitz Thompson and NNy  base on 

neural network and their respective graphs. The MSE and 

relative efficiency for different estimators are summarized in 

table 5 and table 6, respectively 

4.5.1. Mean Squared Errors for the Three Estimators 

Generally, the estimator with a smaller MSE is regarded as 

the most efficient one. From table 5, MSEs of ˆ
PSy  and ˆ

HTy

seems to be smaller than that of ˆ
NNy  in some samples. 

However, from other sample sizes of 30, 50, 60, 140, 170 and 

180 the ˆ
NNy  seems to have reduced MSE than both ˆ

PSy  and

ˆ
HTy . 

Table 5. Mean squared errors. 

sample size 10 20 30 40 50 60 70 80 90 100 

MSE ˆPSy  1,370,169 859,520.8 580,612.3 272,088.1 222,080.3 334,603.4 179,408.7 71,437.53 163,451.4 88288.461294 

MSE ˆNNy  1,590,084 915,882.8 558,692.0 274,834.0 211,162.1 332,052.8 188,068.0 80,527.14 180,894.9 92306.082951 

MSE ˆHTy  1,370,161 859,5174 580,615.0 272,089.3 222,080.5 334,603.6 179,408.5 71,437.52 163,450.2 88288.144870 

 
sample size 110 120 130 140 150 160 170 180 190 

MSE ˆPSy  44,149.37 57,281.52 62,500.49 27,073.59 36,449.45 11,280.14 11,057.85 5626.4989832 3378.4032344 

MSE ˆNNy  49,747.63 62,026.60 71,536.54 22,811.91 41,009.77 16,125.52 9,646.633 5292.7885287 3796.9954252 

MSE ˆHTy  44,149.34 57,281.20 62,500.33 27,073.94 36,4491.2 11,279.88 11,058.01 5626.7551753 3378.6445113 

 

4.5.2. Relative Efficiency (MSE Ratios) for Various Sample 

Size 

Table 6 on relative efficiency examines the efficiency of 

the various estimators, i.e. the, MSE ˆ
PSy /MSE ˆ

HTy , MSE 

ˆ
NNy /MSE ˆ

HTy  and MSE ˆ
PSy /MSE ˆ

NNy . There does not 

appear to be a noticeable difference in the performances of 

both ˆ
PSy and ˆ

NNy in comparison to ˆ
HTy . In some instances, 

both ˆ
PSy and ˆ

NNy has smaller error margins than ˆ
HTy , while 

in other samples, ˆ
HTy has lower error margins than both 

nonparametric estimators. For example, for the sample sizes 

30, 40, 50, 60, 140, 170, 180 and 190 the estimator ˆ
PSy  have 

high efficiency than ˆ
HTy , while in samples sizes,30, 50, 60, 

140, 170 and 180 estimator ˆ
PSy  has high efficiency than

ˆ
HTy . This lack of noticeable difference in the performances 

of the three estimators may point to the robustness of the 

estimators ˆ
PSy and ˆ

NNy . On the other hand, in 6 of the 

sample replications with sample sizes 30, 50, 60, 140, 170 

and 180 ˆ
NNy  seems to be more efficient than ˆ

PSy . This 

shows that both estimators may not be different in efficiency. 

Table 6. Relative efficiency (MSE ratios) for various sample size. 

sample size 10 20 30 40 50 60 70 80 90 100 

MSE ˆPSy /MSE ˆHTy  1.000006 1.000004 0.9999953 0.9999954 0.9999988 0.9999994 1.000001 1.000000 1.000007 1.000004 

MSE ˆNNy /MSE ˆHTy  1.160509 1.065578 0.9622417 1.010087 0.9508358 0.9923766 1.048267 1.127239 1.106728 1.045509 

MSE ˆPSy /MSE ˆNNy  0.8616962 0.9384616 1.039235 0.9900089 1.051705 1.007681 0.9539565 0.8871237 0.9035710 0.956475 

 
sample size 110 120 130 140 150 160 170 180 190 

MSE ˆPSy /MSE ˆHTy  1.000001 1.000006 1.000003 0.9999868 1.000009 1.000023 0.9999854 0.9999545 0.9999286 

MSE ˆNNy /MSE ˆHTy  1.126804 1.082844 1.144579 0.8425780 1.125124 1.429583 0.8723659 0.9406467 1.1238221 

MSE ˆPSy /MSE ˆNNy  0.8874667 0.9234994 0.8736862 1.186818 0.8887994 0.6995209 1.146291 1.0630500 0.8897570 

 

4.5.3. MSE and MSE Ratio Graphs for Various Sample 

Sizes 

Results in figure 8 show that the MSE for the three 

estimators decreases as the sample size increases, this point 

to the consistency of the three estimators. Figure 9 and figure 

10 shows relative efficiency of the proposed nonparametric 

estimators ratio MSE ˆ
PSy /MSE ˆ

HTy  and MSE ˆ
NNy /MSE 

ˆ
HTy  respectively. The ratio for figure 9 is mostly 

concentrated at a point slightly below one and a point around 

one for figure 10. This implies that both nonparametric 

estimators are efficiently competing with the design estimator 

HTy . Figure 11 shows relative efficiency of the proposed 

nonparametric estimators ratio MSE ˆ
PSy /MSE ˆ

NNy . This 

ratio is mostly concentrated at a point around one as well 

implying that both estimators may be equally efficient. 
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Figure 8. MSE for spline, HT and neuralnertwork estimators. 

 

Figure 9. MSE ratio for spline and HT estimators. 

 

Figure 10. MSE ratio for neural nertwork and HT estimators. 

 

Figure 11. MSE ratio for spline and neural nertwork estimators. 

5. Conclusion 

This study concludes that both estimators ˆ
PSy  and ˆ

NNy  

are competitively efficient estimators since they 

interchangeably yield smaller errors in estimation in 

comparison with the design estimator; ˆ
HTy . Both 

nonparametric estimators ˆ
PSy  and ˆ

NNy  appear not to 

have a noticeable difference in their performances in 

comparison to ˆ
HTy . As pointed out in setion 4.5, both 

ˆ
PSy  and ˆ

NNy  have smaller error margins than ˆ
HTy in 

some instances, while in other samples, ˆ
HTy has smaller 

error margins than both nonparametric estimators. This 

lack of noticeable difference in the performances of the 

three estimators may point to the robustness of the 

estimators ˆ
PSy  and ˆ

NNy . The results in sections 4.3 and 

4.4 show the two nonparametric model calibrated 

estimators are consistent and unbiased, respectively. The 

design estimator; ˆ
HTy is considered to be a very reliable 

design estimator and therefore, this study concludes that 

the two nonparametric model calibrated estimators are 

also quite reliable as well. 

This study can be applied to a real-world problem. In 

sampling, there are cases whereby some information may be 

missing due to non-sampling, non-response or even due to 

non-observed. Still, there is relevant auxiliary information 

about a variable at the cluster level. In such instances, this 

study recommends model calibrated estimators to be the 

estimators of choice. This study has shown that in cases 

where there are missing values at the cluster level but the 

auxiliary information is available at such level, then, an 

advantage can be taken of this auxiliary information to obtain 

cluster totals, which are then used in the estimation of 

population total. 
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